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Lesson 20: Process Characteristics- 

2nd Order Lag Process 
ET 438a Automatic Control Systems 
Technology 
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Learning Objectives 

After this series of presentations you will be able to: 
 

 Describe typical 2nd order lag models found in control 
systems. 

 Write mathematical formulas for 2nd order lag 
process models  

 Compute the parameters of this process model. 
 Identify the Bode plots of this process model. 
 Identify the time response of this process model. 
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Second-Order Lag Processes 
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Characteristics:    Two energy storage elements 
   System response determined by three  
   parameters: steady-state gain-G, damping 
   ratio z, and resonant frequency, wo 

 
Examples:   2 capacitances,  
   1 mass and 1 spring 
   1 capacitance and 1 inductance  

General Second Order Lag Process 

Equations 
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Time domain equation: 

Transfer function: 
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Coefficients in terms of 
Parameters z and w0 
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General Second Order Lag Process 

Equations 
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Combine these 
two equation 
and simplify 
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Characteristic Equation: 
Roots determine system 

response 

Second Order System Responses 
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Find roots to characteristic equation 

Plot these roots on complex plane As poles near 
imaginary axis 
 system become  
more 
oscillatory  

Two poles at these 
locations 

If z=0, 
damping is zero 
and system will 
oscillate at 
w=w0 
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Second Order System Responses 
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w0z= 

This controls 
the exponential 
rise and decay 

12

0 zw

When 0<z<1 above 
equation determines 
conditional frequency-
a damped sinusoid 

Second Order System Responses 
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Roots of quadratic formula can have three possible forms 
  1)  real - distinct 
  2)  real - identical 
  3)  imaginary - conjugate pairs 

Location of roots is controlled 
by the values of z and w0.  
 
If natural frequency is constant 
them damping controls system 
response 

 

-jw 

jw 
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Second Order System Responses 
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Damping coefficient value and system responses 

z = 1   - critically damped system.  Reaches the final value the 
fastest without having any overshoot. Roots are equal and real. 

Time response 

Final value in 
approx. 1.4 
seconds No 
Overshoot. 

Second Order System Responses-Critically 

Damped 
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Bode plot of Critically damped system 

Two poles 
at this point 
-3 dB from 
max. gain 

Response 
similar to  
lag process 



11/13/2015 

6 

Second Order Response-Over Damped 

System 
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z > 1   - over damped system.  Reaches the final value slowly but 
with no overshoot. More damping, slower response to final value. 
Roots are real but not equal. 

Compared to the 
critically damped 
case, the response 
time is slower. 
Approx. 6.5 sec to 
get to final value vs 
1.4 sec 

6.5 sec 

Over Damped System Frequency Response 
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Bode plot of Over damped system 
Pole at this 
point -3 dB 
from max. 

gain 

 Second 
Pole at 
higher 

frequency 
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Second Order Response-Under Damped 

System 
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z < 1   - under damped system .  Reaches the final value  fast but 
with overshoot. Less damping more overshoot.  Roots are 
conjugate pairs. 

Overshoots to 1.5 

Settling time is time 
Required to reach 
% of final value 
Approximately 4.5 sec 

Under Damped System Frequency Response 
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Bode plot of under damped system 
Resonant 
Peak at 5 
rad/sec 

Natural oscillating 
frequency of system 

90 degree phase 
shift at resonant 
frequency 



11/13/2015 

8 

Determining System Parameters From 

Characteristic Equation 
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Example 20-1:  The block diagrams shown below represent three second 
order systems.  Use the characteristic equations of each transfer function 
to determine the values of w0 and z for each and determine if each system 
is over, under or critically damped.  
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c) 

Example 20-1 Solution (1) 
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a) Equate the general characteristic equation with that of the transfer function.  
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Example 20-1 Solution (2) 
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c)  
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Ans 

Ans Under damped 

Note:  The numerator of the transfer functions does not affect the 
response of the system.  It determines the maximum output. 

As damping increases, one of the system poles becomes more dominant. 
The dominant pole controls system response. 

Second Order Mechanical System 
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Example 20-2:  The mechanical system shown below is at rest with an 
initial height of h(0)=0.  An external input force, f(t) disturbs the system.  
The system output , h(t) is the centerline position of the mass.  The 
system parameters are: 
     Cm = spring capacitance (Inverse of spring constant, K) =0.001 m/N 
     Rm = resistance due to viscous friction (B)= 20 N-s/m 
     M = mass = 10 Kg 

Find:     a) coefficients of the second order 
system equation 

 b) system transfer function 
 c) resonant frequency 
 d) damping ratio 

e) if system is over, under or critically 
damped 
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Example 20-2 Solution (1) 

lesson20et438a.pptx 

19 

a) Sum the external forces.  From Newton’s Law  F=Ma 

M 

fs(t) 

f(t) 

Ma 

fd(t) 

+ 

0Ma)t(f)t(f)t(f ds 

m

s
C

)t(h
)t(f 











dt

)t(dh
R)t(f md

2

2

dt

)t(hd
MMa 

Sum forces 

Where: 

Example 20-2 Solution (2) 
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General form of 2nd order 
system 

2

m2 sec 0.01Kg) m/N)(10 001.0(MCA 

sec 0.02sec/m)-N m/N)(20 001.0(RCA mm1 

m/N 001.0CG m 

Add terms to both sides 

Ans a 
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Example 20-2 Solution (2) 
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b) Find transfer function 
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Take Laplace transform of above equation and factor out common term 
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Example 20-2 Solution (3) 
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c) Find the resonant frequency  w0 

rad/sec 10
sec 0.01

1

A
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d) Find the damping ratio z 
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z Ans 

e) The damping ratio is z<1, so the system is under damped.  Applying 
external force causes the mass center to oscillate before coming to 
rest at a new position.  
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